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Objectives

We present a new clustering algorithm DBMSTClu providing a solution to
the following issues: 1) detecting arbitrary-shaped data clusters, 2) with no
parameter, 3) in a space-efficient manner by working on a limited number of
linear measurements, a sketched version of the dissimilarity data graph G.

Steps of the method

1 The dissimilarity data graph G with N nodes is handled as a stream of edge
weight updates and sketched in one pass into a compact structure with space
cost O(N polylog(N)), cf. method from [1] relying on `0-sampling principle [2].

2 From the graph sketch, an Approximate Minimum Spanning Tree (AMST) T is
recovered containing N − 1 weighted edges s.t. for all i ∈ [N − 1], weights
wi ∈ (0, 1]. An MST is good for expressing the underlying structure of a graph.

3 Without any parameter, DBMSTClu performs successive edge cuts in T which
create new connected components that can be seen as clusters. At each
iteration, a cut is chosen as the one maximizing a criterion named
Density-Based Validity Index of a Clustering partition (DBCVI) based on
Dispersion and Separation defined on each connected component.

Cluster Dispersion & Separation

•The Dispersion of cluster Ci (DISP) is defined as the maximum edge weight
of Ci:

∀i ∈ [K], DISP(Ci) =



max
ej∈E(Ci)

w(ej) if |E(Ci)| 6= 0
0 otherwise.

•The Separation of cluster Ci (SEP) is defined as the minimum distance
between nodes of Ci and nodes of other clusters Cj, i 6= j, i, j ∈ [K]. Cuts(Ci)
is the set of edges incident to Ci:

∀i ∈ [K], SEP(Ci) =



min
ej∈Cuts(Ci)

w(ej) if K 6= 1
1 otherwise.
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Figure 1: SEP and DISP for cluster C1 in T (N = 12, K = 3).

Validity Index of Cluster & Clustering Partition

•The Validity Index of cluster Ci, i ∈ [K] is defined as:

VC(Ci) = SEP(Ci)− DISP(Ci)
max(SEP(Ci),DISP(Ci))

•The Density-Based Validity Index of a Clustering partition
Π = {C1, . . . , CK}, DBCVI(Π) is defined as the weighted average of the
Validity Indices of all clusters in the partition.

DBCVI(Π) = ΣK
i=1
|Ci|
N
VC(Ci)
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Figure 2: DBMSTClu algorithm
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Tricks for a linear time implementation

1 For a performed cut in cluster Ci, VC(Cj) for any j 6= i remain unchanged.
2 SEP and DISP exhibit some directional recurrence relationship in T : knowing
these values for a given cut, we can deduce them for a neighboring cut left and
right (cf. Fig. 3) by a Double Depth-First Search.
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Figure 3: Recursive relationship for left and right Dispersions resulting from the cut of edge e:
DISPleft(e) = max(w(S1)), DISPright(e) = max(w(S2), w(S3)) where w(.) returns the edge weights
of the subtree in parameter. Separation works analogically.

Experimental results

1 Safety of the sketching:
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Figure 4: Noisy moons: SEMST, DBSCAN (ε = 0.15, minPts = 5), DBMSTClu with AMST

2 Scalability: experiments within the Stochastic Block Model

K\N 1000 10000 50000 100000 250000 500000 750000 1000000
5 0.34 2.96 14.37 28.91 73.04 148.85 218.11 292.25
20 0.95 8.73 43.71 88.51 223.18 449.37 669.29 889.88
100 4.36 40.25 201.76 398.41 995.42 2011.79 3015.61 4016.13
“100/5" 12.82 13.60 14.04 13.78 13.63 13.52 13.83 13.74

Table 1: DBMSTClu’s execution time (in s) varying N and K (avg. on 5 runs).
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Figure 5: Visualization of Table 1 exhibiting linear
property

Figure 6: DBMSTClu applied on real dataset
mushroom (N = 8124) detects 23 clusters in 3.36s
while DBSCAN requires 9s.

Conclusion and perspectives
•We introduced a novel space-efficient density-based clustering algorithm
working solely on an MST without any parameter. Its robustness has been
assessed by using as input an approximate MST, retrieved from the
dissimilarity graph sketch, rather than an exact one.

•Further work would be to 1) use DBMSTClu in privacy issues, 2) adapt both
the MST recovery and DBMSTClu to the fully online setting by updating the
current MST and clustering partition as new edge weight updates are seen.
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