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Introduction

Why random projections? (1/3)

When all you data do not fit into memory:

Massive data ...

... in high dimensionality.

Observation

Lot of high dimensional data with
low intrinsic dimension.

Perform dimensionality reduction, e.g.:

Principal Component Analysis (PCA);

Random Projection (RP).
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Introduction

Why random projections? (2/3)

Founder Lemma: [Johnson and Lindenstrauss, 1984]:

Let ε ∈]0, 1[, X = {x1, . . . , xN} ⊂ Rn.

Let m ∈ N, s.t. m ≥ Cε−2 logN.

Then there exists a linear map Φ : Rn → Rm s.t. :

∀xi , xj ∈ X , (1− ε)||xi − xj ||2 ≤ ||Φxi − Φxj ||2 ≤ (1 + ε)||xi − xj ||2.

One can take Φ = Random (near orthonormal) which works with
high probability.
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Introduction

Why random projections? (3/3)

Dimensionality reduction

||Φxi − Φxj ||2 ≈ ||xi − xj ||2, ||Φxi ||2 ≈ ||xi ||2

Properties

Near isometric embedding,

(1± ε) distorsion,

Distance and angle preserved between points.
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Introduction

Random projections applications

Linear embedding / Dimensionality reduction,

Approximate nearest neighbor algorithms, e.g.:

Random Projection Trees,
Locality Sensitive Hashing-based algorithms.

Compressed sensing,

Efficient kernel computations via random feature maps,

Convex optimization algorithms,

Quantization techniques,

etc.

=⇒ information retrieval, similarity search, classification, clustering.
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Introduction

Brief random projections evolution (1/2)

Φ: Dense i.i.d. distribution

[Johnson and Lindenstrauss, 1984],

[Frankl and Maehara, 1987]: Φi ,j ∼ N (0, 1√
m

),

[Indyk and Motwani, 1998] & [Dasgupta and Gupta, 1999]:
simplification of JL lemma’s proof,

[Achlioptas, 2003]: Φi ,j ∼ {−1, 1} uniformly,

[Matoušek, 2008]: Φi ,j ∼ any subgaussian distribution.
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Introduction

Can one sparsify the projection matrix Φ?

Can one sparsify the projection matrix Φ?
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Introduction

Brief random projections evolution (2/2)

Φ: Sparse i.i.d. distribution

[Kane and Nelson, 2010]: #nonzero entries in Φ = O(n logN/ε),

Fast Johnson-Lindenstrauss Transform - FJLT
[Ailon and Chazelle, 2006]: Φ = PHD

Pi,j =

{
∼ N (0, 1

q ) with probability q

0 with probability 1− q
,

H normalized Hadamard,
D with independent Rademacher (±1) entries.

[Matoušek, 2008]: For some q ∈ O(η2m) ≤ 1:

Pi ,j =


1√
q with probability q

2

0 with probability 1− q
−1√
q with probability q

2

for x s.t. ||x||∞/||x||2 ≤ η (i.e. not sparse).
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Introduction

And what is about our TripleSpin-family?

Main purpose of TripleSpin-family

Speed up several machine learning algorithms relying on unstructured
random matrices with almost no loss of accuracy!

Arguments

Speedups:

Fast Fourier Transform (FFT) or Fast Hadamard Transform (FHT):
O(n log n) instead of O(mn) for matrix-vector product.

Less storage:

H is not stored,
Sparse matrices: diagonal ones,
Structured matrices: n × n-circulant one =⇒ only n parameters,
Structured matrices with ±1 entries: only bits.
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Introduction

Some of state-of-the-art for structured matrices in
applications (1/2)

Approximate Nearest Neighbor search (ANN), e.g.:

[Andoni et al., 2015]: Locality-Sensitive Hashing (LSH),
HD3HD2HD1.

Quantization, e.g.:

[Yu et al., 2014]: Gcirculant ,

[Choromanska et al., 2016]: Ψ-regular random matrix.
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Introduction

Some of state-of-the-art for structured matrices in
applications (2/2)

Kernel approximation via random feature maps
[Rahimi and Recht, 2007, Rahimi and Recht, 2009]

[Le et al., 2013]: ”FastFood”, 1√
n
SHGPHB,

[Feng et al., 2015]: ±1Gcirculant ,

[Choromanski and Sindhwani, 2016]: ”P-model”, and Toeplitz-like
semi Gaussian matrices,∑r

i=1 Circ[gi ] SkewCirc[hi ] for some {gi ,hi}ri=1 ∈ Rn.
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Brief review of TripleSpin family

Definition of TripleSpin family

TripleSpin for 3 blocks

G→ Gstruct

Gstruct = M3M2M1 ∈ Rn×n,

where matrices M1,M2 and M3 satisfy 3 conditions.

Examples

[Gcirc | Gskew−circ | GToeplitz | GHankel ]D2HD1,
√
n HDg1,...,gnHD2HD1,
√
n HD3HD2HD1.
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Brief review of TripleSpin family

Role of each TripleSpin block

Gstruct = M3M2M1
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Brief review of TripleSpin family

Role of each TripleSpin block - M1

Gstruct = M3M2M1

↪→ Balances data.
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Brief review of TripleSpin family

Role of each TripleSpin block - M2

Gstruct = M3M2M1

↪→ Makes the rows of the final matrix almost independent.
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Brief review of TripleSpin family

Role of each TripleSpin block - M3

Gstruct = M3M2M1

↪→ Budget of randomness.
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Brief review of TripleSpin family

Condition 1

Condition 1: M1 and M2M1 are (δ(n), p(n))-balanced isometries.

Definition: (δ(n), p(n))-balanced matrices

A randomized matrix M ∈ Rn×n is
(δ(n), p(n))-balanced if it represents an
isometry and for every x ∈ Rn with ‖x‖2 = 1
we have:

P[‖Mx‖∞ > δ(n)√
n

] ≤ p(n).

Example

M1 = HD1, since HD1 is (log(n), 2ne−
log2(n)

8 )-balanced.

Anne MORVAN Google Research Seminar, New York July 14, 2016 20 / 65



Brief review of TripleSpin family

Condition 2 (1/2)

Condition 2: M2 = V(W1, ...,Wn)Dρ1,...,ρn for some (ΛF ,Λ2)-smooth
set W1, ...,Wn ∈ Rk×n and some i.i.d sub-Gaussian random variables
ρ1, ..., ρn with sub-Gaussian norm K .

V(W1, ...,Wn) =


W1

W2

...
Wn

 Dρ1,...,ρn =


ρ1 0 . . . 0

0 ρ2
. . .

...
...

. . .
. . .

...
0 . . . 0 ρn


Typically, K = 1.
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Brief review of TripleSpin family

Condition 2 (2/2)

Definition: (ΛF ,Λ2)-smooth sets

A deterministic set of matrices W = {W1, ...,Wn}, where
Wi = {w i

k,l}k,l∈{1,...,n} is (ΛF ,Λ2)-smooth if:

for i = 1, ..., n: for i 6= j and l = 1, ..., n:

maxi ,j ‖(Wj)TWi‖F ≤ ΛF and maxi ,j ‖(Wj)TWi‖2 ≤ Λ2.
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Brief review of TripleSpin family

Condition 3

Condition 3: M3 = C(r, n) for r ∈ Rk , where r is random
Rademacher (±1 entries) or Gaussian.

M3 =


r1 . . . rk 0 . . . . . . . . . . . . . . . 0
0 . . . 0 r1 . . . rk 0 . . . . . . 0

...
...

...
...

0 . . . . . . . . . . . . . . . 0 r1 . . . rk


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Some applications Locality-Sensitive Hashing (LSH)
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Some applications Locality-Sensitive Hashing (LSH)

Locality-Sensitive Hashing (LSH) for Nearest Neighbor
(NN) search

NN search naive approach

Linear search.

Prohibitive cost when lots of high dimensional data.

Solution: Approximate Nearest Neighbor (ANN) search with LSH
algorithm in sublinear time.

LSH : Two phases

Build a data structure (hash table) for fast lookup.

NN search phase: query the database with query point q.
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Some applications Locality-Sensitive Hashing (LSH)

Hashing vs LSH

Hashing principle

Mapping data from a potential
high dimensionality to a
fixed-size hash value.

Fast lookup in a database.

LSH principle

Exploiting collision probabilities.
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Some applications Locality-Sensitive Hashing (LSH)

LSH in details

Hash value computation

Hash value h of a point x ∈ Rn is a combination of k hash function
results hi , i = 1...k s.t. hi = f (Aix) with Ai ∈ Rm×n a projection
matrix s.t. m� n.

Example: Concatenation: h = h1h2...hk .
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Some applications Locality-Sensitive Hashing (LSH)

LSH in details

L hash tables
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Some applications Locality-Sensitive Hashing (LSH)

ANN search with LSH

ANN search

Hash query q.

Determine pool of
candidates (in green).

Linear scan in the pool
of candidates.
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Some applications Locality-Sensitive Hashing (LSH)

Cross-polytope LSH

Cross-polytope from [Terasawa and Tanaka, 2007]

hi (x) = f ( Gx
||Gx||2 )

h = (2m)k−1h1 + ...+ hk .

G ∈ Rm×n a random matrix with i.i.d. Gaussian entries.

f (y) returns the closest vector to y from the set {±1ei}1≤i≤m, where
{ei}1≤i≤m stands for the canonical basis.

State-of-the-art cross-polytope LSH [Andoni et al., 2015]
G→ HD3HD2HD1.

Our variant: Gstruct = M3M2M1 + theoretical guarantees.
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Some applications Locality-Sensitive Hashing (LSH)

Cross-polytope LSH experiment with TripleSpin-matrices

Experimental protocol

Plot Pr [h(p) = h(q)] as a function of dist(p, q),

100 runs,

k = 1,

Draw points from the hypersphere =⇒ maxp,q dist(p, q) =
√

2,

20000 points per interval of distance:
[0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.2), [1.2,

√
2],

n = 256,

m = 64.
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Some applications Locality-Sensitive Hashing (LSH)

Cross-polytope LSH experiment with TripleSpin-matrices
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Some applications Kernel approximation
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Some applications Kernel approximation

Kernel methods

Principle

Goal: To solve nonlinear problems with linear methods.

How? Map all data into a higher dimensional (possibly infinite) dot
product space ν with feature map φ : χ→ ν.

Access to mapped data:

κ(x, y) = 〈φ(x), φ(y)〉

Example: the Gaussian radial basis function or Gaussian kernel,

κ(x, y) = e
−||x−y||22

2σ2 .
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Some applications Kernel approximation

Why kernel approximation?

Decision evaluation in kernel machines: the ”kernel trick”

f (x) = 〈w, φ(x)〉 =
〈∑N′

i=1 αi φ(xi ), φ(x)
〉

=
∑N′

i=1 αi κ(xi , x)

N ′ : number of nonzero αi = number of ”support vectors”

Why approximation ?

Problem: evaluating f cost inscreases as the dataset grows
N number of training samples.

Kernel or Gram matrix K :

Kij = κ(xi , xj)

=⇒ storage cost: O(N2).
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Some applications Kernel approximation

Kernel approximation via random feature maps

Random Kitchen Sinks [Rahimi and Recht, 2007, Rahimi and Recht, 2009]〈
z(x)︸︷︷︸
∈Rk

, z(y)

〉
≈

〈
φ(x)︸︷︷︸
∈RD

, φ(y)

〉
= κ( x︸︷︷︸

∈Rn

, y)

where k � n; D high, possibly infinite.

z(x) = 1√
k
s(Gx),

random Gaussian matrix G ∈ Rk×n with k � n, k = O(nε−2 log 1
ε2 ),

s is a nonlinearity function.

Still a problem...

Storage of G: O(kn),

Computation of Gx:
O(kn).

Solution

Storage of Gstruct : O(k log n),

Computation of Gstructx:
O(k log n).

Anne MORVAN Google Research Seminar, New York July 14, 2016 37 / 65



Some applications Kernel approximation

Experimental protocol for kernel approximation (1/2)

A ∈ Rk×n with k � n,

Gaussian kernel

κG (x, y) = e
−||x−y||22

2σ2 ,

κ̃G (x, y) = 1
k s(Ax)T s(Ay) with s(x) = e

−ix
σ applied

pointwise.

Angular kernel

κ0(x, y) = 1− θ
π with θ = cos−1( xT y

||x||||y||),

κ̃0(x, y) = 1− distHamming (s(Ax),s(Ay))

k

with s(x) = sign(x) applied pointwise.
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Some applications Kernel approximation

Experiments for kernel approximation (1/4)

Speedups with Gaussian kernel

Time(G)/Time(Gstruct)

Matrix dimensions 29 210 211 212 213 214 215

GToeplitzD2HD1 x1.4 x3.4 x6.4 x12.9 x28.0 x42.3 x89.6

Gskew−circD2HD1 x1.5 x3.6 x6.8 x14.9 x31.2 x49.7 x96.5

HDg1,...,gnHD2HD1 x2.3 x6.0 x13.8 x31.5 x75.7 x137.0 x308.8

HD3HD2HD1 x2.2 x6.0 x14.1 x33.3 x74.3 x140.4 x316.8
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Some applications Kernel approximation

Experiments for kernel approximation (2/4)

Speedups with Gaussian kernel

Time(G)/Time(Gstruct)

(n = 211) k 211 212 213 214 215

GToeplitzD2HD1 x5.97 x6.68 x6.51 x6.52 x6.95

Gskew−circD2HD1 x6.61 x6.73 x6.54 x6.65 x7.36

HDg1,...,gnHD2HD1 x13.74 x11.35 x10.86 x10.82 x11.90

HD3HD2HD1 x10.67 x11.39 x10.22 x10.36 x11.8
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Some applications Kernel approximation

Experimental protocol for kernel approximation (2/2)

Source 1

Measure of accuracy

10 runs,

Dataset: USPST,

16× 16 grayscale images,

2007 points of dimensionality 256 (n = 256),

σ = 9.4338,

Plots Gram reconstruction error:
||K−K̃||F
||K||F

,

Ki ,j = κ(xi , xj).

1http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
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Some applications Kernel approximation

Experiments for kernel approximation (3/4)

||K−K̃||F
||K||F
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Some applications Kernel approximation

Experiments for kernel approximation (4/4)

||K−K̃||F
||K||F

+

+

+

+
+

+

Gram matrix reconstruction error 
USPST dataset for the angular kernel
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Some applications Newton sketches
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Some applications Newton sketches

Brief review of unconstrained convex optimization (1/5)

The unconstrained optimization problem

minimize f (x)

where f : R → R is convex and twice continuously differentiable.

Descent methods

x (t+1) = x (t) + µ(t)∆x (t),

f (x (t+1)) < f (x (t)),

µ(t) > 0 except when x (t) is optimal,

∆x (t) is the step or search direction,

µ(t) is called the step size or step length.
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Some applications Newton sketches

Brief review of unconstrained convex optimization (2/5)

General descent method

given a starting point x

repeat

Determine a descent direction ∆x

Backtracking line search. Choose a step size µ > 0

Update. x := x + µ∆x

until stopping criterion is satisfied;
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Some applications Newton sketches

Brief review of unconstrained convex optimization (3/5)

Gradient descent method with Newton step

Newton step: ∆x = −∇2f (x)−1∇f (x) (vs. ∆x = −∇f (x))

Newton decrement: λ = (∇f (x)T∇2f (x)−1∇f (x))1/2

�

Used as stopping criterion + in backtracking line search:

λ2 = −∇f (x)T∆x
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Some applications Newton sketches

Brief review of unconstrained convex optimization (4/5)

Newton’s method

given a starting point x , tolerance ε > 0

repeat

Compute the Newton step ∆x and λ2.

Stopping criterion. quit if λ2 ≤ ε

Backtracking line search. Choose a step size µ > 0

Update. x := x + µ∆x

until stopping criterion is satisfied;
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Some applications Newton sketches

Brief review of unconstrained convex optimization (5/5)

Backtracking line search

given a descent direction ∆x , α ∈ (0, 0.5), β ∈ (0, 1)

µ := 1

while f (x + µ∆x) > f (x) + αµ∇f (x)T∆x do

µ := βµ

end
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Some applications Newton sketches

Principle of Newton sketch’s algorithm
[Pilanci and Wainwright, 2015]

Newton’s method of unconstrained convex optimization

x (t+1) = x (t) − µ(t) ∇2f (x)−1 ∇f (x)

Newton sketch’s algorithm [Pilanci and Wainwright, 2015]

Is of interest where we have an analytic expression for the square root of
the Hessian matrix. The problem is cast as the following:

x (t+1) = x (t) − µ ((S (t) (∇2f (x (t)))1/2)T︸ ︷︷ ︸
(SM)T

S (t)(∇2f (x (t)))1/2︸ ︷︷ ︸
SM

)−1∇f (x (t))

where S (t) ∈ Rm×n is a sequence of isotropic sketchs matrices.
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Some applications Newton sketches

Example for Newton sketch’s algorithm (1/2)

Large scale logistic regression problem

minx∈Rn f (x)

with f (x) =
∑N

i=N log(1 + exp(−yiaTi x))

N observations (ai , yi )i=1...N

s.t. ai ∈ Rn,

yi ∈ {−1, 1}.
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Some applications Newton sketches

Example for Newton sketch’s algorithm (2/2)

Analytic expressions for the gradient and the Hessian matrix

∇f (x (t)) =
∑n

i=1( 1
1+exp(−yiaTi x)

− 1)yiai ∈ Rn,

∇2f (x (t)) = ATdiag( 1
1+exp(−aTi x)

(1− 1
1+exp(−aTi x)

))A ∈ Rn×n,

A = [aT1 ...a
T
N ] ∈ RN×n, with N � n,

We set

∇2f (x (t))1/2 = diag( 1
1+exp(−aTi x)

(1− 1
1+exp(−aTi x)

))1/2A ∈ RN×n.
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Some applications Newton sketches

Experimental results (1/2)
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Some applications Newton sketches

Newton sketch’s algorithm, complexity analysis (1/3)

Comparison

Exact Newton:

∇2f (x)−1

∇2f (x (t)) = ATdiag( 1
1+exp(−aTi x)

(1− 1
1+exp(−aTi x)

))A

Cost = O(Nn2 + n3) (n� N)
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Some applications Newton sketches

Newton sketch’s algorithm, complexity analysis (2/3)

Comparison

Exact Newton:

Cost = O(Nn2 + n3) (n� N)

Sketching: ((S (t) (∇2f (x (t)))1/2)T︸ ︷︷ ︸
(SM)T

S (t)(∇2f (x (t)))1/2︸ ︷︷ ︸
SM

)−1

∇2f (x (t))1/2 = diag( 1
1+exp(−aTi x)

(1− 1
1+exp(−aTi x)

))1/2A ∈ RN×n

Cost = O(3nN logN + mn2 + n3) with m� N

Critical issue: when is O(3nN logN + mn2) better than O(Nn2)?
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Newton sketch’s algorithm, complexity analysis (3/3)

Comparison

Exact Newton:

Cost = O(Nn2 + n3) (n� N)

Sketching: Cost = O(3nN logN + mn2 + n3) with m� N

Sub-sampling (m rows):

(SampleRows( (∇2f (x (t)))1/2)T︸ ︷︷ ︸
(M)T

SampleRows((∇2f (x (t)))1/2︸ ︷︷ ︸
M

))−1

∇2f (x (t))1/2 = diag( 1
1+exp(−aTi x)

(1− 1
1+exp(−aTi x)

))1/2A ∈ RN×n

Cost = O(mn2 + n3) with m� N
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Experimental results (2/2)
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Conclusion

TripleSpin paper brings:

first theoretical guarantees for the fastest known cross-polytope LSH
[Andoni et al., 2015] based on the HD3HD2HD1 structured matrix,

a general structured paradigm for large scale machine learning
computations with random matrices, providing computational
speedups and storage compression.

Questions

Can one obtain computations speedups for these matrices from the
TripleSpin model for which the Fast Fourier Transform trick does not
work ?

Theoretical guarantees for learning with structured matrices ? (work
in progress)
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Thank you for your attention!
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Hadamard transform - recursive definition

H0 = 1

H1 = 1√
2

(
1 1
1 −1

)

Hm = 1√
2

(
Hm−1 Hm−1

Hm−1 −Hm−1

)
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